
The Austraian National University

Group Representations, Nilpotent Algebras and Finite Algebra
Groups

Maximillian K. Wakefield

A THESIS

in

Mathematics

Presented to the Faculties of the Australian National University in
Algebra for the Degree of Masters of Mathematical Sciences

2018

Supervisor of Thesis

Masters Covenor



Dedicated to Lindsay and Sabina.

2





Abstract

The purpose of this thesis is introduce the reader to representations of finite

algebra groups and summarise some key results concerning such representa-

tions.

The work that follows begins by reviewing key properties of finite group

representations and nilpotent algebras. The representations studied are for

the most part complex representations, however much of the theory applies

equally to many other Fields. We follow this discussion with an introduc-

tion to finite algebra groups by exploring the relationship that exists between

these groups and the Jacobson Radical of algebras over finite fields.

Then we consider the work of Zoltan Halasi in significant detail and at-

tempt to clarify some of the ambiguites a reader may face in reading his

paper. In addition, we prove and state many of the excluded facts and re-

sults on which his arguments rely.

Finally, we conclude by analysing the irreducible representations of a spe-

cific class of finite algebra groups. This is our working example. In doing

so, we highlight how the work of Halasi simplifies the search for irreducible

representations. We end the final section by introducing a non-finite algebra

group that shares many similarities to the class of groups considered in our

working example. Determining whether or not an analagous theorem to the

one proved by Halasi holds for these groups is an open problem. It is the be-

lief of the author that a person who is interested in exploring the irreducible

representations of such groups may find this thesis a solid introduction.
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1 Introduction

In Algebra, to perform good mathematics one must often work from the ground up. To

appreciate the work of Halasi and to consider representations of finite algebra groups

(both to be defined later) is no different. The introduction chapter summarises the

general topics that the author researched and studied in completing this Thesis. At the

commencement of the project most of the studied topics were relatively foreign to the

author and thus he has considered it of great importance to outline many of the results

and definitions on which understanding the work of Halasi relies. In addition, since

the work of Halasi sits in the crossfire of Group Theory, Representation Theory and

Nilpotent Ring Theory, the required background knowledge is relatively vast for such a

concise paper and justifies the lengthy introduction. A mature, or adult mathematician

(in the words of Alex Isaev) will be able to skip most of the introduction and simply

use it as a reference where required. A final aim of the introduction chapter is to ensure

the thesis is as self-contained as possible.

For the most part, the author has written this thesis as if he were writing to a student

(perhaps himself) attempting to learn this interesting and challenging area of mathe-

matics.

Finally, the author takes great pleasure in thanking his supervisor Uri Onn for in-

troducing him to many new topics in algebra and for providing patient and persistent

guidance and feedback. Thanks must also be given to the following people for teach-

ing the author mathematics at the Australian National University and inspiring him to

take on greater challenges in the field. In some but no particular order they are : Idione

Meneghal, John Stachurski, Joan Licata, Alex Isaev, James Borger, David Smyth, John

Urbas, Michael Barnsley, Timothy Trudgian and Bryan Wang.
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1.1 An introduction to Representation Theory

We now give a brief summary of the established results regarding the beautiful interplay

between characters, representations and group theory that will be relied on in this text.

Definition 1.1. Let F be a field, V a vector space over F and G a group. Then an

F -representation (or simply representation) of G is a group homomorphism ⇢ : G !
GL(V ). If n is the dimension of V as vector space over F , then n is also the dimension,

or degree, of the representation.

From here on we will only consider finite-dimensional vector spaces V and finite groups.

If V is vector space of dimension n, choosing a basis B gives an isomorphism from

GL(V ) to GLn(F ). It is then common to identify ⇢ with a group homomorphism, or

matrix representation, R : G! GLn(F ), by the rule

⇢g  its matrix = Rg.

Since the image of an elememt g 2 G under ⇢ is an invertible linear operator, denoted

by ⇢g, such a homomorphism explicitly requires that

⇢gh(v) = ⇢g(⇢h(v)),

for all g, h 2 G and v 2 V. In matrix notation,

Rgh = RgRh.

If ⇢ and ⇢0 are two representations of a group G in V and V 0
respectively, then ⇢ ⇡ ⇢0

(isomorphic) if there exists an isomorphism of vector spaces T : V ! V 0
, such that

T (⇢g(v)) = ⇢0g(T (v))

for all g 2 G, v 2 V. The compatibility with the operations of G leads T to be referred

to as a G-isomorphism. Note that the condition of T being a G-isomorphism can be

reconsidered as requiring that

⇢g(v) = T�1
(⇢0g(T (v))),

for all g 2 G and all v 2 V. When ⇢ and ⇢0 correspond to matrix representations R and

R0
respectively, then ⇢ ⇡ ⇢0, or equivalently, R ⇡ R0

, if there exists an invertible matrix

P such that

Rg = P�1R0
gP

for all g 2 G.
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An equivalent and at times appealing way to think of a representation of a group G on

a vector space V is by viewing G as acting by linear operators on the underlying set V .

That is, a representation is a map G ⇥ V ! V that satisfies the follwoing axioms of a

group action (sometimes refrerred to as group operation) by linear operator:

1. (1, v) = v for all v 2 V , where 1 is the identity in G.

2. (gg0, v) = (g, (g0v)) for all g.g0 2 G and v 2 V .

3. (g, (v + v0)) = (g, v) + (g, v0) for all g 2 G and v, v0 2 V.

4. (g, (cv)) = c(g, v) for all g 2 G, v 2 V and c 2 F , where F is the scalar field.

It is a pedantic exercise to see that operation by linear operators on the vector spave V

is equivalent to a representation on V . If G is a group and S is a set, any map G⇥S ! S

that satisfies the first two conditions in the above list is a group action. Throughout this

thesis we will employ group actions in multiple settings (e.g. the induced representation

covered in section 1.2).

To simplify our efforts, when discussing representations of finite groups G in this paper,

we will be referring to group homomorphisms

⇢ : G! GLn(C).

As a result, from here on all representations are C-representations.

Definition 1.2. Let ⇢ be a representation of G. Then the character � associated with

⇢ is the C valued function whose domain is the group G, defined by

�(g) = trace ⇢g.

In general the character of a representation is not a homomorphism - for instance �(1) =

1 if and only if the representation is one-dimensional. When � : G! C\{0} is a group

homomorphism, we say that � is a linear character.

Lemma 1.3. Let � be the character of a representation ⇢ of a finite group G.

1. Isomorphic representations have the same character.

2. Characters are constant on conjugacy classes.

Proof. 1) When P is an invertible matrix and A is a n⇥n matrix, then trace(PAP�1
) =

trace(A). Conjugate matrices have the same trace.

2) If g and g0 are conjugate, then there exists h 2 G such that g0 = hgh�1. Then since

R is a homomorphism, Rg0 = RhRgR
�1
h . That is, Rg0 and Rg are conjugate matrices.

The result follows.
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We have the following properties of characters, the third of which was just discussed:

Proposition 1.4. If � is the character of a representation ⇢ of degree n, then:

(a) �(1) = n,

(b) �(g�1
) = �(g),

(c) �(hgh�1
) = �(g).

where z̄ denotes the complex conjugate.

The group algebra C[G] is the set of all formal linear combinations

↵ =

X

x2G

axx,

with ax 2 C. Addition is then given by the rule

X

x2G

axx+

X

x2G

bxx =

X

x2G

(ax + bx)x.

Multiplication is then given by the convolution product

✓X

x2G

axx

◆✓X

x2G

bxx

◆
=

X

z2G

✓ X

xy=z

axby

◆
z.

As a ring, C[G] is commutative if and only if G is commutative. We also observe that

as an algebra over C, the elements of G form a basis.

Now suppose that V is a C-vector space and ⇢ : G ! GL(V ) a representation of

G. Given an element g 2 G and v 2 V , by setting

gv = ⇢g(v),

and extending linearly, V becomes a "left" C[G] module. Conversely, every algebra-

homorphism

C[G]! EndC(V )

induces a group-homomorphism

G! GL(V ).

Thus the theory of representations is often intertwined with the theory of modules.

Many texts do not discriminate between the terminology "linear representation" and

"module". We will for the most part refer to representations, however the alternative

module approach is very useful in the application of Wedderburn and Maschke’s theorem.
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In addition, we encourage all readers to consider proving key theorems concerning rep-

resentations by analysing the action of the group algebra C[G] on left-modules. An

obvious example is when we encounter the Regular representation (see Artin [2].) The

Regular representation corresponds to treating C[G] as a left-module over itself and is

perhaps the most important representation of a group that one encounters in represen-

tation theory.

If ⇢ : G! GL(V ) is a representation and W a vector subspace of V such that ⇢g(w) 2 W

for all g 2 G and w 2 W , then W is G-invariant. Since ⇢g is an invertible map and

W is a finite-dimensional subspace, this is equivalent to stating that ⇢gW = W for all

g 2 G. By restricting ⇢ to W , we obtain a subrepresentation of V , namely

⇢W : G! GL(W ).

In the language of modules, this corresponds to W being a sub-C[G]-module of V . When

V is the direct sum of G-invariant subspaces, say V = W1

L
W2, we say that ⇢ is the

direct sum of its restriction to W1 and W2 and we identify this by writing

⇢ = ⇢1 � ⇢2,

where ⇢1 and ⇢2 are the restrictions of ⇢ to W1 and W2, respectively.

Definition 1.5. Let ⇢ : G ! GL(V ) be a representation. Then ⇢ (or for convenience

V ) is irreducible if V has no proper G-invariant subspace. If V has a proper G-invariant

subspace, then ⇢ (or V ) is reducible.

In module terminology, an irreducible representation V is a simple C[G]-module.

Theorem 1.6 (Schur’s Lemma). Let A be a ring and V and W simple A-modules. If

� : V ! W is a non-zero module homomorphism, then � is an isomorphism.

Proof. The kernal and image of a module homomorphism are sub-modules. The result

follows.

Corollary 1.1. Let ⇢ and ⇢0 be irreducible representations on V and V 0
respectively. If

T : V ! V 0
is a non-zero G-invariant, C-homomorphism, i.e. T (⇢g) = ⇢0g(T ) for all

g 2 G, then ⇢ ⇡ ⇢0.

Proof. We note that by extending the action of G linearly, V and V 0
are simple C[G]-

modules. Since T is a homomorphism of C-vector spaces that is G-invariant, it is a

C[G]-module homomorphism. By Schur’s lemma it is an isomorphism.

11



The next two theorems are powerful foundational results in Algebra. For this reason we

state them without limiting the base field to the complex numbers.

Theorem 1.7 (Maschke’s Theorem). Every representation of a finite group G over a

field F with characteristic not dividing |G| is a direct sum of irreducible representations.

For a representation theoretic proof of this theorem one can review the text by Artin

[2]. Alternatively, one can find a proof in Lang [3] that the group algebra F [G] is

semi-simple, i.e., every F [G]-module E is the direct sum of simple submodules.

Theorem 1.8 (Wedderburn). Let G be a finite group and F a field such that the char-

acteristic of F does not divide |G|. Up to isomorphism, there are finitely many simple

F [G]- modules.

A proof of this result can be found in almost any graduate text on algebra. From here

on we now assume that V is a vector space over C unless otherwise specified.

Theorem 1.9 (Wedderburn). Let ⇢i : G ! GLn
i

(Vi), 1  i  h, be the distinct

irreducible representations of G where ni = dimVi. Then the algebra C[G] is a product

of matrix algebras Mn
i

(C). That is

C[G] ⇡
hY

i=1

Mn
i

(C).

Proof. See Serre [4].

An immediate consequence of these results is the first two parts of the following corollary.

The third item is proved in Artin [2] using facts about characters which we discuss next.

Corollary 1.2. Let G be a finite group.

1. There are finitely many isomorphism classes of irreducible representations.

2. Let ⇢1, ..., ⇢h represent the isomorphism classes of irreducible represntations of G,

and let �1, ...,�h be the characters they afford. The dimension di of ⇢i (or of �i)

divides the order of G and |G| = d21 + ...+ d2h.

3. The number of irreducible represntations is the same number as the number of

conjugacy classes in the group.

A useful consequence of this result is the following theorem.

Theorem 1.10. Let G be a finite abelian group.

1. Every irreducible character of G is one-dimensional. The number of irreducible

characters is equal to the order of the group.
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2. Every matrix representation R of G is diagonalizable. That is, every matrix Rg is

similar (conjugate) to a diagonal matrix.

For each irreducible representation ⇢ we likewise have an irreducible character �. Let

Irr(G) denote the set of irreducible characters of a finite group G.

Any function from a group G into C that is constant on conjugacy classes is called a

class function. It follows from lemma 1.3 that characters are class functions. The set

of complex-valued class functions is a complex vector space, which we denote as C. It is

turned into a Hermitian space by the form

h', i = 1

|G|
X

g2G

'(g) (g). (1.1)

We confirm it is a Hermitian form C ⇥ C ! C. To do so obeserve that viewing each

� 2 C as vectors, we have

� =

�
�(g1), ...,�(gn)

�
g
i

2G,

where n = |G|. Then 1.1 is simply the standard form on Cn
scaled by a factor. It is

thus a Hermitian form.

Some of the key results one learns in their early studies of representation theory are the

following theorems. We present the theorems when F = C, however many of the results

can be extended to other fields.

Theorem 1.11 (Orthogonality Relations). The irreducible characters of G form an

orthonormal basis of the space C. If �i is the character of an irreducible representation

⇢i, then h�i,�ii = 1. If �i and �j are the characters of non-isomorphic irreducible

representations ⇢i and ⇢j, then h�i,�ji = 0.

Theorem 1.12. Every complex-valued class function ' on a group G can be uniquely

expressed in the form

' =

X

�2Irr(G)

a��,

where a� 2 C.
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1.2 Induced Representations.

Let H be a subgroup of a finite group G. Suppose for some vector space W over C we

have a representation

� : H ! GL(W ).

For simplicity, let �h(w) = hw. Where [G : H] = n, let ⇤ = {�1, ...,�n} be a system of

representatives of the left cosets of H in G, i.e. each g 2 G can be wriiten uniquely as

�ih for some �i 2 ⇤, h 2 H. Denote the set of cosets of H in G by G/H. The Group

Action

G⇥G/H ! G/H

given by the rule

(g,�1H) (g�1)H = �jH for some 1  j  n,

is a well defined group action - a permutation of the cosets G/H - with the following

elementary properties.

1. The Operation of G on G/H is transitive.

2. The stabilizer of the coset H is the subgroup H.

Returning our focus to vector spaces, for each �i we have a vector space �iW over C if

we identify scalar multiplication C⇥ �iW ! �iW by the rule

(c,�iw) �i(cw).

It is easy to see that �iW ⇡ W as C-vector spaces. Let

V =

nM

i=1

�iW.

If �iw 2 �iW , then multiplication by an element g 2 G can be defined in a very natural

way. Since g�i = �jh for some 1  j  n and h 2 H, let g(�iw) = �j(hw) = �jw̃ since

hW = W. We extend using linearity and have G act on the vector space V as follows

g
nX

i=1

�iwi =

nX

i=1

(g�i)wi =

nX

i=1
g�

i

=�
j

h
j

�j(hjwi).

This defines the induced representation

⇢GH : G! GL(V ).

We turn this into a formal definition for referencing purposes.
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Definition 1.13. Let ⇢ : G! GL(V ) and � : H ! GL(W ) be representations where G

acts on V as decsribed above. Then the representation ⇢ is induced by the representation

�.

Observe that

dim(V ) = n dim(W ) = [G : H] dim(W ). (1.2)

It is common to write ⇢ as �G
H , or simply �G

when H is clear.

Theorem 1.14 (Characters of induced representations). If ⇢ : G! GL(V ) is induced

from � : H ! GL(W ) and �⇢ and �� are the corresponding characters, then for each

g 2 G

�⇢(g) =
X

�2⇤
��1g�2H

��(�
�1g�) =

1

|H|
X

s2G
s�1gs2H

��(s
�1gs).

Proof. We aim to compute �⇢(g) = traceV (⇢g). For a basis for V , we consider a union

of bases of ⇢�
i

W. Clearly the only non-zero diagonal terms of ⇢g will correspond to the

subspaces ⇢�
i

W such that ⇢g⇢�
i

W = ⇢g�
i

W = ⇢�
i

W. This implies that g�i = �ih for

some h 2 H. The first formula follows from this.

The second formula follows from two observations. Firstly, suppose that for s 2 G

we have sH = �iH. Then g�iH = �iH implies s�1gsH = H. Secondly, since s = �ih for

some h 2 H and applying the fact that characters are constant on conjugacy classes,

we have

��(s
�1gs) = ��((h

�1��1
i )g(�ih)) = ��(h

�1
(��1

i g�i)h) = ��(�
�1
i g�i).

The character of the induced representation is called the induced character. If ⇢ = �G

and �� is the character of �, then we often write the induced character as �G
H , or simply

�G
� .

We conclude our brief introduction to representation theory with the following fact that

induction is transitive.

Fact 1.15. Suppose that H  G  K are groups. Then:

(�G
H)

K
G = �K

H .
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1.3 Nilpotent Algebras.

Much of this thesis will be focused on the study of algebras A over finite fields Fq. We

recall that an algebra A over a field F is a F -vector space equipped with an F - bilinear

product A⇥A! A. In many areas of mathematics, we consider an algebra over a field

F to be a ring A together with a ring homomorphism

' : F ! Z(A),

where Z(A) is the center of A. Then scalar multiplication F ⇥ A ! A is given by the

rule

(f, a) '(f)a.

For our purposes this latter description of an algebra is quite limiting as we now see.

Definition 1.16. An associative algebra A over a field F is said to be a nilpotent

algebra if there exists a positive integer n such that An
= 0. The nilpotency class of A

is the smallest natural number k such that Ak
= 0.

Fact 1.17. A non-zero nilpotent algebra A over a field F with nilpotency class k does

not have a multiplicative identity.

Proof. Per absurdum, suppose A has a multiplicative identity which we denote as 1.

Then 0 = 1

k
= (1

k�1
)1 = 1

k�1
= ... = 1. Hence 1 = 0 and A is the zero vector space.

Contradiction.

Thus the "ring-homomorphism" definition of an algebra over a field F is limiting because

it clashes with the definition of a nilpotent algebra, because there is no way to map the

multilplicative identity of F into A. Thus all we require is A to be an F -vector space

with an F -bilinear map.

Example 1.1. A simple example of a nilpotent algebra over Q is the algebra E of strictly

upper triangular matrices in M4(Q) with equal elements next to the main diagonal.

E =

2

6664

0 a ⇤ ⇤
0 0 a ⇤
0 0 0 a

0 0 0 0

3

7775
.

Importantly, we note that since E is nilpotent, and thus contains no multiplicative

identity, we cannot identify the algebra structure of E over Q via an injective ring ho-

momorphism. Instead we consider the action of Q on E to be "inherited" from the
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algebra M4(Q). Whenever it is clear that the nilpotent algebra we are working with is a

sub-algebra of a larger unital algebra, then it will be assumed that the scalar multipli-

cation is "inherited." An important example of this is when we work with the Jacobson

Radical of a finite dimensional algebra over a field.

Definition 1.18. Let A be a finite dimensional algebra over a field F . The Jacobson

Radical of A is the ideal J(A) = J which is the intersection of all maximal ideals of A.

Theorem 1.19. The Jacobson radical of a finite dimensional algebra A over a field F

is a nilpotent algebra over F .

Before proving this theorem we state and prove some propositions. All of these propo-

sitions can be found as exercises in Lang [3]. Unless stated otherwise, all ideals are left

ideals and the ring A is not assumed to be commutative.

Proposition 1.20. Let A be a unital ring. There exists a bijection between maximal

(left) ideals of A and simple A modules (up to isomorphism).

Proof. The bijection is given by the rule

M 2 {set of maximal ideals of A} ! A/M.

Suppose M is a maximal ideal of A. Then A/M is a A-module. By the Correspondence

Theorem for A-modules, A/M is simple. Conversely, let E be a simple A-module. Then

by definition, E is not the zero module. Choose x 2 E such that x 6= 0. Then f : A! E

given by the rule a  ax is module homomorphism, with non-trivial image. Since the

image of a module homomorphism is a sub-module, f is surjective with kernal M . By

the Isomorphism Theorem for modules, A/M ⇡ E. By the correspondence theorem, M

must be maximal.

Proposition 1.21. For every simple A-module E we have JE = 0, where J = J(A).

Proof. Choose x 2 E such that x 6= 0. Then a  ax is a surjective module homo-

morphism with kernal M . By 1.15 we know that M is maximal. Clearly J being the

intersection of all maximal ideals implies that J ⇢ M. Hence Jx = 0. Since x was an

arbitrary non-zero element of E, the result follows.

Proposition 1.22. The Jacobson radical of (A/J) is 0.

Proof. We know that A/J is a ring. Let ⇡ : A⇣ A/J be the canonical ring-homomorphism.

Suppose M 0
is a maximal ideal in A/J . By the correspondence theorem ⇡�1

(M 0
) is a

maximal ideal in A that contains J . Hence maximal ideals in A/J correspond to max-

imal ideals in A that contain J . Let J 0
= J(A/J). If J 0 6= 0, then there exists x /2 J

such that ⇡(x) 2 J 0
. But then x is in all maximal ideals that contain J . Since every

maximal ideal of A has J as a subset, x is in all maximal ideals. Hence x is in J .

Contradiction.
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Proposition 1.23. The Jacobson radical is a two-sided ideal.

Proof. Let

L
i Ei be the direct sum of all simple A-modules Ei. Then we have the

obvious ring homomorphism

A! EndZ
M

i

Ei

given by a  L
aEi. By 1.15 the Jacobson radical is the kernal of this map, which is

a two-sided ideal by the definition of a module.

Theorem 1.24 (Nakayama’s Lemma). Let A be any ring and E a finitely generated

A-module. Let J = J(A). If JE = E then E = 0.

Proof. We prove the theorem when A is a local ring with unique maximal ideal M .

Supose E is finitely generated by (e1, ..., en). Since JE = E, we see that there exists

j1, ..., jn 2M such that

j1e1 + ...+ jnen = en.

Hence (1� jn)en = j1e1 + ...+ jn�1en�1. Since jn 2M , we must have (1� jn) as a unit.

If it was not a unit, then it would be contained in a maximal ideal. Since A is local

it would be contained in M . But then 1 2 M , which is absurd. Thus en is contained

in the module generated by the n � 1 generators. Applying induction shows that the

generating set must be empty.

The general case is more complex and we omit it.

In the preceding proof we actually touch on a more general description of the Jacobson

Radical.

Proposition 1.25. Let J be the Jacobson Radical of a ring A. Then x 2 J if and only

if for all a, b 2 A, 1 + axb is a unit.

Proof. We choose to work with left ideals. Suppose x 2 J and for contradiction suppose

1+ axb is not a unit. Then the principal ideal A(1+ axb) is contained in some maximal

ideal M . Since J is two-sided, xb 2 J and thus xb 2 M . Hence �axb 2 M . This

would imply that 1 2 M , which is our contradiction. Conversely, suppose that for all

a, b 2 A we have that 1 + axb is a unit. For contradiction, suppose that x /2 J . Then

there exists a maximal ideal M 0
such that x /2 M 0

. Then M [ Ax = A. Hence there

exists m 2 M, y 2 A such that m � yx = 1. Hence 1 + yx 2 M and thus not a unit.

Contradiction.

Proposition 1.26. The Jacobson radical J contains all Nilpotent ideals of a ring A.
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Proof. Let N be a (left) nilpotent ideal of class n. Suppose x 2 N . Then for any a 2 A,

we have ax 2 N. Then

(1 + ax)(1� (ax) + (ax)2 � (ax)3 + ....± (ax)n�1
) = 1.

By 1.25, x 2 J .

Before we prove theorem 1.19 we still need another definition.

Definition 1.27. A Ring A is Artinian if every descending sequence of left ideals

J1 � J2... with Ji 6= Ji+1 is finite.

With this definition and the following lemma we prove 1.14. We won’t prove the lemma.

Lemma 1.28. A finite dimensional algebra A over a field F is Artinian.

Proof of Theorem 1.19. Let J(A) = J be the Jacobson radical of A. We immediately

have a descending sequence J � J2... � Jm
, which stabilizes for some integer m because

A is artinian. Suppose for contradiction that Jm 6= 0. Consider the set of left ideals

{K} such that K ⇢ Jm
and JmK 6= 0 for all K 2 K. This set is non-empty because

Jm 2 K. Because A is artinian, there exists a minimal principal ideal X 2 K. Choose

some x 2 X such that Jmx 6= 0. Since Jmx is an ideal and Jmx ⇢ Ax, by X being

minimal, we have X = Jmx. Then JX = JJmX = JmX = X. By Nakayama’s lemma,

X = 0, which is absurd. Thus our original assumption that Jm 6= 0 must be false.

At times, it will be convenient to consider a nilpotent algebra N over a field F without

reference to a unital algebra A containing N . In this case, if necessary, we will be clear

in describing the action of F on N .
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1.4 Free Algebras

Let R be a commutative ring and X = {X1, ..., Xn} be a set of variables. Let R[X]

be the free R-module with basis consisting of all possible words in the alphabet X.

R[X] can naturally be made into an R-algebra by defining multiplication as R-billinear

concantenation. The R-algebra arising from these operations is free algebra over R

generated by the set X. We denote it as FR(X).

The free algebra FR(X) is well described on wikipedia [15] as the non-commutative

analogue of the polynomial ring over R in X.

For any algebra A we define An
to be the set of all sums

x1 · · · xn + ...+ y1 · · · yn

where xi, yi 2 A. It is an ideal of A. We then define FR(n,X), the free nilpotet
algebra over R with nilpotency class n, to be

FR(X)/FR(X)

n.

A frequentely used and easy fact (that seems to at times confuse people) is that for any

algebra A and any integer n, An ⇢ Ak
for all 1  k  n.
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1.5 Algebra Groups

For much of this paper we study algebras over finite fields. For clarity, for some prime

p, the field Fq is the finite field of q = pf elements where f � 1. The order of 1 in Fq,

which is referred to as the characteristic of the field, is clearly p.

Suppose that A is a finite dimensional unital Fq-algebra. If J = J(A) is the Jacob-

son radical of A, then from our work above we have a group

G = 1 + J = {1 + j|j 2 J}.

This is called an Fq-algebra group or more generally, a finite algebra group. The group

operation is given by the rule

(1 + j1)(1 + j2) = 1 + j1 + j2 + j1j2.

Conversely, if J is a finite dimensional nilpotent algebra over Fq, we can define an al-

gebra A in such a way that J is the Jacobson radical of A. We do this be letting

A = Fq · 1 + J . Since this algebra only contains one maximal ideal (J), we immediately

have that J(A) = J . This allows us to establish a bijection between finite nilpotent

algebras J and algebra groups.

When F is a field of prime charcateristic p and A is an algebra over F , e.g. F = Fq,

then the group G = 1 + J is a p-subgroup of the group of units of A (see Isaacs [5]).

Since we can consider J as a vector space over Fq, we can deduce further that the group

G has q-power order.

A subgroup H of G is an Fq-algebra subgroup if H = 1 + U , for some U that is a

sub-algebra of J . Hence H is itself an Fq- algebra subgroup and thus must have q-power

index in G. This fact combined with the dimension formula for induced representations

(equation 1.2) will provide the key link between Theorem 2.1 and Theorem 2.2 discussed

in section 2. The following lemma is also useful:

Lemma 1.29. Let G = 1+J be a finite algebra group. Then 1+Jk
is a normal subgroup

for all k � 1.

Proof. Obvious.
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1.6 Commutators in Groups and Rings:

Much of what we study later on involves exploiting relationships that exist between

various subgroups of G = 1 + J . Thus we now outline some notation that will be

employed. For any two subgroups H1, H2 of G, the subgroup generated by the set of

elements h1h2h
�1
1 h�1

2 , where h1 2 H1 and h2 2 H2, will be denoted by [H1, H2].

When A is an algebra, the Lie bracket is the commutator [x, y] = xy�yx for x, y 2 A.

When dealing with an algebra A and sub-algebras B1 and B2, the notation [B1, B2] will

denote the sub-algebra generated by elements of the form b1b2� b2b1 where b1 2 B1 and

b2 2 B2. It will be referred to as the Lie commutator for obvious reasons.

It is somewhat frustrating that we use the same notation, [·, ·], for two different things.

Nevertheless, we do so because it matches the notation used by Halasi.

This concludes our introduction chapter.
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2 An introduction to the work of Halasi.

The work of Zoltan Halasi in 2003 concerned nilpotent algebras over finite fields and

representations of the corresponding algebra groups. Specifically, the theorem proved

by Halasi settled an open problem regarding the nature of such representations. This

theorem had originally been asserted by Gutkin, in [12], however he provided a defective

proof. Halasi remedies this situation. The therom first stated by Gutkin and later

correctly proved by Halasi is:

Theorem 2.1 (Halasi [1]). Let G be an Fq- algebra group and � 2 Irr(G). Then there

exists an Fq-algebra subgroup H  G and a linear character � of H such that � = �G.

The bijection established in 1.5 allows us to state this in simpler terms. Namely, if A is

a finite dimensional unital algebra over Fq, where q = pr and J the Jacobson radical of

A, then every irreducible character of G = 1+J is induced from a one-dimensional char-

acter of some subgroup of the form H = 1+U , where U is a subalgebra of J , i.e. U ⇢ J .

In 1994 Isaacs (in [5]) provided an analysis of the failings of Gutkin’s original argu-

ment, as well as a counter-example involving upper-triangular matrices. In addition, in

the same paper Isaacs proved his Theorem A, which we now state as our Theorem 2.2:

Theorem 2.2 (Isaacs[5]). Let G be an Fq-algebra group. Then all irreducible complex

characters of G have q� power degree.

It is clear now that by the arguments in section 1.5 concerning the index of finite algebra

subgroups, that Theorem 2.2 is a direct consequence of Theorem 2.1. We note that the

following Corollary given by Isaacs in [5] is a direct consequece of Theorem 2.1.

Corollary 2.1. Let q be a power of a prime p and let T be a Sylow p-subgroup of

GL(n, q). Then T is such that all of its irreducible characters have degrees that are

powers of q.

Proof. The proof provided by Isaacs in [5] deduces that T can be taken to have the

form 1 + J where J is the Jacobson radical of an Fq-algebra A. The result follows from

Theorem 2.1.

It is also appropriate to recognise that in proving Theorem 2.1, Halasi relies heavily

on texts, exercises and papers recorded by Isaacs that are included in the references.

In researching the work of Halasi, [5] and [8] proved to be invaluable references for the

author of this thesis. Throughout the review of the paper, we note many of the instances

where these works provide key insights.
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We also make mention that Halasi was not the first to make progress on the proof of

Theorem 2.1. Of note is the work of Andre in [13] where he provided a proof of Theorem

2.2 for the case Jp
= 0, where p = charFq. To do so he relied on the exp map described

after Lemma 3.2. Moreover, Kazhdan in [14] provided a proof for a specific group that

was in turn applicable to a range of other similar groups. However in the words of Isaacs,

"for each type of group he imposes some restriction on the characteristic" [5]. Halasi’s

work thus rids the field of such limitations and allows mathematicians to analyse char-

acters of finite algebra groups without restriction. The brilliance of Halasi was in his

ability to pass the results of such authors to any free nilpotent algebra over the integers,

which will be explained later on as the key breakthrough required to prove Theorem 2.1.

Halasi proves Theorem 2.1 by utilising relationships that exist between commutators of

subgroups and their corresponding sub-algebras. The key theorem proven and used is

the following:

Theorem 2.3 (Halasi). Let J be an arbitrary nilpotent ring and let 1 + J be the group

associated to J . Then for all m,n 2 N:

[1 + Jm, 1 + Jn
] ✓ [1 + J, 1 + Jm+n�1

]. (2.1)

To prove Theorem 2.1 Halasi also applies the following observation:

Theorem 2.4. Let G = 1 + J be an Fq-algebra group and ' 2 Irr(1 + J2
). If ' is a

G-invariant character, then ' is linear.

We now provide a comprehensive treatement of Halasi’s paper. In doing so we re-write

his results, expanding on details omitted from the paper. It is our hope that this clarifies

some ambiguities that a reader may encounter when first examining Halasi’s paper.
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3 Review of Halasi’s work.

Before beginning we provide a quick roadmap of the approach taken by Halasi. The

following diagram summarises the order in which the theorems are proved. The arrows

indicate that the preceeding theorem is the key ingredient in the proof of the succeeding

theorem. The diagram is:

Theorem 2.3 99K Theorem 2.4 99K Theorem 2.1 99K Theorem 2.2,

where the final arrow can be replaced by an implication arrow by our previous ob-

servation concerning the order of finite algebra groups. Thus Halasi establishes useful

and interesting relationships between subgroups generated by commutators and applies

these relationships to prove the theorems that concern character theory. The creativity

of the paper in this sense is quite extraordinary.

The bulk of Halasi’s paper is devoted to proving Theorem 2.3 and thus this is where we

begin. To prove Theorem 2.3 Halasi initially asserts the following lemma. We do the

same.

Lemma 3.1. If [1 + Ak, 1 + Al
] ✓ [1 + A, 1 + Ak+l�1

] for a nilpotent ring A, then

[1 +Bk, 1 + Bl
] ✓ [1 +B, 1 + Bk+l�1

] for every quotient ring B of A.

Proof. Let ⇡ : A ! B be the canonical ring-homomorphism. Then it is trivial to

see that ⇡̂ : 1 + A ! 1 + B given by extending ⇡, i.e. ⇡̂(1 + x) = 1 + ⇡(x) is a

well-defined group homomorphism. Moreover, ⇡̂(1 + Ak
) = 1 + Bk. Now suppose H

and K are subgroups of 1 + A. Then we have that ⇡̂[H,K] = [⇡̂(H), ⇡̂(K)]. Thus

[1+Ak, 1+Al
] ✓ [1+A, 1+Ak+l�1

] implies that ⇡̂[1+Ak, 1+Al
] ✓ ⇡̂[1+A, 1+Ak+l�1

].

Passing ⇡̂ inside the commutator brackets completes the proof.

The following lemma greatly simplifies the proof of Theorem 2.3. This proof is not

included in the paper.

Lemma 3.2. Let N be a nilpotent ring of nilpotency class n. Then N is a quotient of

FZ(n,X) for some X.

Proof. Any ring is a Z-algebra in exactly one way. We are free to choose X, so we choose

sufficiently many elements from N and mod out by all relations. Since the nilpotency

class of N is n, it is clear that FZ(X)

n
vanishes in this process.

It follows that to prove Theorem 2.3 it is enough to show that formula (2.1) holds in the

case that J is a free nilpotent algebra over Z. However, to do so Halasi first turns his
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attention to free nilpotent algebras over Q and a bijection between Lie commutators and

group commutators. We alert the reader to the fact that the proof provided by Andre

in [13] was limited precisely because it depended on the following bijection. Halasi is

able to sidestep this limitation, but before exploring this we first outline the usefulness

of the bijection. The following is extracted from Halasi [1].

If J is a nilpotent algebra over the field R such that either char R = 0 (e.g. R = Q) or

char R = p and xp
= 0 for all x 2 J then we can define the map exp : J ! 1 + J and

the inverse of this map ln : 1 + J ! J by the power series:

exp(x) = 1 + x+

x2

2

+ ...+
xk

k!
+ · · ·,

ln(1 + x) = x� x2

2

+ ...+ (�1)k+1x
k

k
+ · · ·.

The Campbell-Hausdorff (found in [6]) formula says that for all a, b 2 J :

exp(a) exp(b) = exp(a+ b+ z(a, b)), (3.1)

where z(a, b) is an element in the Lie subalgebra generated by a and b.

Lemma 3.3. Let J be a nilpotent algebra over Q. Then the exp map establishes a

bijection between Jk
and 1 + Jk

for all k. Furthermore, exp is a bijection between the

Lie commutator [Jk, J l
] and the group commutator [1 + Jk, 1 + J l

].

Proof. First part of lemma: The exp and ln are formally mutual inverses to eachother,

and give rise to well-defined maps. It is clear that exp(Jk
) ⇢ 1+Jk

and that ln(1+Jk
) ⇢

Jk. The first bijection is established.

Second part of lemma: To begin we aim to show that [1 + Jk, 1 + J l
] ⇢ exp[Jk, J l

].

Note that [Jk, J l
] is a subalgebra of J and thus by the construction of algebra groups

and (3.1), exp[Jk, J l
] is a subgroup of 1 + J . Choose x 2 Jk

and y 2 J l
. Then

[exp(x), exp(y)] = exp([x, y] + !(x, y)) by [7, Lemma 9.15], where !(x, y) 2 [Jk, J l
].

Thus [1 + Jk, 1 + J l
] ⇢ exp[Jk, J l

].

We now show that exp[Jk, J l
] ⇢ [1 + Jk, 1 + J l

]. To do so we assume that k � l

and use reverse induction on the size of k, noting that for k greater then the nilpotency

class of J the result is true. Suppose that u 2 [Jk, J l
]. Then we write u as

u =

nX

i=1

[ui, vi],
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where ui 2 Jk
and vi 2 J l. By the lemma mentioned before and by the Campbell-

Hausdorff formula (3.1),

exp(u)

✓ nY

i=1

[exp(ui) exp(vi)]

◆�1

= exp(u)
1Y

i=n

exp(�[ui, vi]� w(ui, vi)) = exp(!),

where ! is a rational linear combination of commutators in the elements ui, vi of weight

� 3. Thus ! 2 [Jk+l, J l
] and exp(!) 2 [1 + Jk+l, 1 + J l

] ✓ [1 + Jk, 1 + J l
] by reverse

induction on k. Therefore exp(u) 2 [1 + Jk, 1 + J l
] and we are done.

This ends the extraction from Halasi [1]. From here we follow Halasi but allow ourselves

the liberty to divert where necessary.

We continue with our focus on free nilpotent algebras over Q and with Lemma 3.3 prove

the following useful equation:

Lemma 3.4. If J is a free nilpotent algebra over Q, then for all k � 2,

[1 + J, 1 + J ] \ (1 + Jk
) = [1 + J, 1 + Jk�1

]. (3.2)

Proof. Utilising the bijection just established, showing

[J, J ] \ Jk
= [J, Jk�1

]

is equivalent to (3.2). That [J, Jk�1
] ⇢ [J, J ] \ Jk

is clear from the definition of the Lie

commutator (see 1.6). To prove [J, Jk�1
] � [J, J ]\Jk

we let n be the nilpotency class of

J and X to be a free generator set of J . Then a basis for J is all words in the alphabet

X of length less than n. Halasi denotes this basis B as

B =

n�1[

i=1

X i,

where X i
= {u1u2 · · · ui|uj 2 X, 1  j  i}. Then [J, J ] \ Jk

is generated as a vector

space over Q by the set

Y = {[a, b]|a 2 X l, b 2 Xm, l +m � k},

where we utilised the fact that the Lie bracket [a, b] is Q- bilinear. We then let a =

x1x2 · · · xl 2 X l
and b = y1y2 · · · ym 2 Y m

such that l +m � k. Then

[a, b] = x1 · · · xly1 · · · ym � y1 · · · ymx1 · · · xl

= (x1)(x2···xly1···ym)�(x2···xly1···ym)(x1)+(x2)(x3···xly1···ymx1)�(x3···xly1···ymx1)(x2)

· · ·+ (xl)(y1 · · · ymx1 · · · xl�1)� (y1 · · · ymx1 · · · xl�1)(xl) 2 [J, Jk�1
].

This shows that Y ⇢ [J, Jk�1
] and thus [J, J ] \ Jk ⇢ [J, Jk�1

].
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This is an important result, however its application is limited because it pertains only

to free nilpotent algebras over Q. Moreover, as discussed above, the use of the exp map

immediately limits any work that relies on the approach taken so far to a restricted

class of finite algebra groups. This is exactly why the work of Andre in [13] only proved

lemma 2.1 for the case that Jp
= 0, where p = charFq.

Fortunately, Halasi is able to show (3.2) holds for free nilpotent algebras over Z, but

to do so requires the following lemma. The proof of the following lemma provided by

Halasi caused the author unnecessary confusion. Perhaps this can be attributed to the

brevity of Halasi’s argument. We have provided a modified proof of the one given by

Halasi in the next section, which is hopefully clearer.
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3.1 Revised proof of Lemma 2.4 in Halasi.

Lemma 3.5. Let V be a vector space over Q and let B = {b1, ..., bj, ...} ✓ V be a basis

of V . For any subset Y we denote hY iZ the set of all linear combinations of elements

from Y with integer coefficients. If Y ✓ {bi � bj|bi, bj 2 B}, then hY iQ \ hBiZ = hY iZ.

Proof. We choose z 2 hY iQ \ hBiZ with z 6= 0. Write z = ↵1y1 + ...+ ↵sys such that

1. ↵i 2 Q⇥
,

2. yi = bt � bk for some t = t(i), k = k(i) and t 6= k, for 1  i  s,

3. The set {y1, ..., ys} ✓ Y is a linearly independent subset of V .

This can always be done for any z 2 hY iQ \ hBiZ by re-arranging and factoring. We

prove the lemma using induction on s.

If s = 1, then z = ↵1y1 = ↵1(bt � bk) for bt, bk 2 B, bt 6= bk. It is clear that for

z 2 hBiZ it must be that ↵1 2 Z.

Now suppose the result holds for dim  s � 1. Since dimhy1, ...ysiQ = s, then there

is a bj 2 B such that there exists exactly one yk, 1  k  s, with non-zero coordinate

in bj. If not then condition 3 would be violated. Since B is a basis, the coefficient ↵ on

bj, which is the coefficient on yk, must lie in Z. Then by assumption

z ± ↵yk =
X

i 6=k

↵iyi 2 hY iZ.

Thus z 2 hY iZ. This completes the proof.
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3.2 Equation (3.2) for free nilpotent algebras over Z.
We now establish equation (3.2) for free nilpotent algebras over Z and to use this to

prove Theorem 2.3. To prove that equation 3.2 holds for for free nilpotent algebras over

Z we adopt the following notation used by Halasi. A free nilpotent algebra over Q of

unspecified nilpotency class will be denoted by N(Q) and a free nilpotent algebra over Z
of unspecified nilpotency class will be denoted by N(Z). The following lemma is exactly

what we require. We provide the proof produced by Halasi [1] verbatim.

Lemma 3.6. For all k � 2,

[1 +N(Z), 1 +N(Z)] \ (1 +N(Z)k) = [1 +N(Z), 1 +N(Z)k�1
].

Proof. Firstly, that [1 +N(Z), 1 +N(Z)k�1
] ⇢ [1 +N(Z), 1 +N(Z)] \ (1 +N(Z)k) is a

simple consequence of the commutator subgroup. To see this, note that for a 2 N(Z)
and b 2 N(Z)k�1

any commutator (1 + a)(1 + b)(1 + a)�1
(1 + b)�1

= (1 + a)(1 + b)(1�
a+a2 · ··)(1� b+ b2 · ··) = (1±ab(P ))), where P is a polynomial in a and b. The reverse

inclusion is much harder.

Observe that 1 +N(Z)k  1 +N(Q)

k
and thus

[1 +N(Z), 1 +N(Z)] \ (1 +N(Z)k)  [1 +N(Q), 1 +N(Q)] \ (1 +N(Q)

k
)

= [1 +N(Q), 1 +N(Q)

k�1
]

by applying Lemma 2.8. Let X be a free generating set of N(Q) and n the nilpotency

class of N(Q). Then we can write all elements of N(Q) as polynomials in X with

coefficients in Q such that all terms of the polynomial have total degree < n. Then

N(Z) is simply the set of polynomials with integer coefficients. Hence it is enough to

show that the elements of [1 + N(Q), 1 + N(Q)

k�1
] with integer coefficients belong to

[1+N(Z), 1+N(Z)k�1
]. Define the degree of an element of N(Z) to be the smallest total

degree of its terms. Let 1 + z 2 [1 +N(Q), 1 +N(Q)

k�1
] \ (1 +N(Z)) be an arbitrary

element of interest. Suppose z has degree l > k�1, then 1+z 2 [1+N(Q), 1+N(Q)

l�1
],

by Lemma 2.8. To show that 1 + z 2 [1 +N(Z), 1 +N(Z)k�1
] we use reverse induction

using that fact that when l � n the result is true.

Let X l
= {u1u2 · · ·ul|uj 2 X, 1  j  l} and [X,X l�1

] = {[u, v]|u 2 X, v 2 X l�1}. Since

1 + z 2 [1 +N(Q), 1 +N(Q)

l�1
], write

1 + z =

Y
[1 + xi, 1 + yi]

±1,

where xi 2 N(Q) and yi 2 N(Q)

l�1. Then [xi, yi] 2 h[X,X l�1
]iQ +N(Q)

l+1. Thus

1 + z =

Y
[1 + xi, 1 + yi]

±1 2
✓
1 +

X
±[xi, yi] +N(Q)

l+1

◆
\ (1 +N(Z))
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⇢ 1 +

�⌦
[X,X l�1

]

↵
Q \N(Z)

�
+N(Q)

l+1.

Applying our Lemma 3.5 we see that h[X,X l�1
]iQ \N(Z) = h[X,X l�1

]iZ, and thus

1 + z 2 1 + h[X,X l�1
]iZ +N(Q)

l+1.

It follows that z 2
Pm

j=1 ↵j[aj, bj] + N(Q)

l+1
, where ↵j 2 Z, aj 2 X and bj 2 X l�1.

Consider

1 + z0 = (1 + z)

✓Y
[1 + ↵jaj, 1 + bj]

◆�1

,

which is an element of [1 + N(Q), 1 + N(Q)

k�1
] \ (1 + N(Z)). Moreover z0 has degree

greater than l since we eliminated all such terms with total degree l. Thus by induction,

1 + z0 2 [1 + N(Z), 1 + N(Z)k�1
]. Since

�Q
[1 + ↵jaj, 1 + bj]

��1
is also clearly in

[1 +N(Z), 1 +N(Z)k�1
], we conclude that 1 + z 2 [1 +N(Z), 1 +N(Z)k�1

].

Proof of Theorem 2.3 . By Lemma 3.1 it is enough to show that equation 2.1 holds

for J = N(Z). From our work we know that

[1 +N(Z)m, 1 +N(Z)n] ⇢ [1 +N(Z), 1 +N(Z)] \ (1 +N(Z)m+n
)

= [1 +N(Z), 1 +N(Z)m+n�1
]

by Lemma 3.2.
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3.3 Characters of Algebra Groups

We now turn our attention to the characters of algebra groups and prove the main The-

orems of Halasi.

Let J be a nilpotent algebra over a finite field Fq where q = pf for some prime p. Let G =

1+J be the finite algebra group associated to J . The main results of Halasi concerning

character theory, namely Theorems 2.1 and 2.4, are proven using the following lemma.

Lemma 3.7. Let G = 1 + J be a finite algebra group of Fq and � 2 Irr(G). Then the

following properties are equivalent:

1. There exist a proper algebra subgroup H < G and ' 2 Irr(H) such that � = 'G.

2. �1+J2
is not irreducible.

To prove this lemma we require some definitions and a fact.

Definition 3.8. Let H C G. If # is a class function on H and g 2 G, then #g
(h) =

#(ghg�1
) is a conjugate class function.

In fact it is shown in Isaacs [8] that this process of conjugating class functions defines a

group operation of G on Irr(H): by g ⇤ '  'g
. Since any element in H acts trivially

on the set of class functions, we can re-phrase this by stating that G/H acts on Irr(H):

by ḡ ⇤ ' 'g
.

Definition 3.9. Let H CG and let ' 2 Irr(H). Then

IG(') = {g 2 G|'g
= ', }

is the Inertia group of ' in G.

It is a subgroup precisely because it is the stabilizer of the character '. Of course

H ⇢ IG(') and |G|/|IG(')| is the order of the orbit.

Fact 3.10 (Isaacs [8]). Let H C G and let ' 2 Irr(H). Then 'G 2 Irr(G) if and only

if IG(') = H.

Definition 3.11. Let � be a character of a group G. Then Z(�) = {g 2 G : |�(g)| =
�(1)}.

For instance, if � is a linear character of a group G then Z(�) = G.

Lemma 3.12. Let � be a character of G and let R : G! GLn(C) be a representation

that affords �. Then Z(�) = {g 2 G|Rg = ↵Ifor some ↵ 2 C}.
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Proof. Firstly, we must show that Rg is similar (conjugate) to a diagonal matrix diag(↵1, ...,↵n).

Observe that we can restrict the representation R to the abelian subgroup hgi. Then

by applying Maschke’s theorem, we see that Rg is similar to a representation in block

diagonal form - i.e. a direct sum of irreducible representations. But hgi is abelian and

thus all irreducible representations are one-dimensional. Hence Rg is similar to a diag-

onal representation. Moreover, clearly |↵i| = 1.

To prove the lemma observe that Rg is similar to diag(↵1, ...,↵n) where |↵i| = 1 and

|
P
↵i| = n. But |

P
↵i| = n if and only if all ↵i’s are the same. Say ↵i = ↵ for all i.

Then Rg is similar to ↵I, which commutes with all matrices. Hence Rg = ↵I.

Definition 3.13. Let � be a character of G. Then ker (�) = {g 2 G|�(g) = �(1)}.

A simple lemma that can be found in Isaacs [8] is the following:

Lemma 3.14. Let R be a representation of G into GLn(C) which affords the character

�. Then g 2 ker(R) if and only if �(g) = �(1).

We also require the following lemma, which concerns the Jacobson radical.

Lemma 3.15 (Isaacs [5]). Let J = J(R), where R is a finite dimensional Fq-algebra

and suppose U ⇢ J is a multiplicatively closed subspace. If J = U + J2, then U = J .

Proof. See Isaacs [5].

Proof of Lemma 3.3. (1) =) (2). Suppose H = 1+U 6= G is an alegbar subgroup and

' 2 Irr(H) such that � = 'G. Let K = H(1 + J2
) = 1 + U + J2

. Since U 6= J , we

have that 1 + J2  K 6= G by Lemma 3.7. By the transitivity of induction (Serre [4]),

� = ('K
)

G
and trivially �K is not irreducible. Since 1 + J2  K, we must have that

�1+J2
is also not irreducible.

(2) =) (1). We assume that �1+J2
is not irreducible and we let  be a constituent

of �1+J2 . Let H = 1 + U � 1 + J2
be a maximal Fq-algebra subgroup such that  is

extendible to H. Then H 6= G because � 2 Irr(G). Choose ' 2 Irr(H) such that ' is

an extension of  and ' is a constituent of �H . Now choose x 2 J � U and note that

the subgroup Nx = 1 + Fqx + U is an Fq-algebra subgroup. Moreover, [Nx : H] = q.

Let # 2 Irr(Nx) be a such that ' is a constituent of #H . By Isaacs’ Theorem 2.2, #(1)

and '(1) are both q powers. Then either #H = ' or #H = 'N
x . Clearly if the first

were true, then H would not be maximal because NX � H. Thus # = 'N
x . Since #

is irreducible, by Fact 3.6, IN
x

(') = H. Since x was arbitrary, IG(') = H. Hence by

another application of Fact 3.6, this time in the reverse direction, 'G 2 Irr(G). By the

Frobenius reciprocity formula we have that � = 'G.

We now have the required tools to prove Theorem 2.4.
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3.4 Proof of Theorem 2.4

Proof of Theorem 2.4. Let G = 1 + J be an algebra group and ' 2 Irr(1 + J2
) be

a G- invariant character. That is, IG(') = G. By reverse-induction, we show that

[1 + J2, 1 + Jk
]  ker' for all k � 2. Clearly when k exceeds the nilpotency class of J

the result holds. So suppose that [1 + J2, 1 + Jk+1
]  ker'. Thus 1 + Jk+1  Z(').

Therefore, by [Isaacs,2 lemma 2.27] we have '1+Jk+1 = �·'(1), where � is a G� invariant

linear character of 1+Jk+1. Hence [1+J, 1+Jk+1
]  ker '. Now we can apply Theorem

2.4, which states that [1 + J2, 1 + Jk
]  [1 + J, 1 + Jk+1

] and thus [1 + J2, 1 + Jk
] 

ker '. Thus [1 + J2, 1 + J2
] is contained in the kernal of the representation. Hence

the representation factors through the commutator subgroup and to be irreducible must

therefore be linear.

Proof of Theorem 2.1. Choose � 2 irr(G). If � is linear we are done. Suppose � is

not linear. Then �1+J2
is clearly G-invariant - because any character is constant on

conjugacy classes. Hence it must be that � /2 Irr(1 + J2
). Hence by lemma 3.11 there

exists a proper algebra subgroup H � G and ' 2 Irr(H) such that � = 'G. If ' is linear

we stop. Otherwise we continue with this process and using the fact that |G| is finite,

we eventually arrive at an algebra subgroup L � H � G such that � is linear and � 2
Irr(L) and ' = �H . Applying the transitivity of induction (Fact 1.15) completes the

proof.

This concludes our review of Halasi’s article.
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4 A Working Example.

We consider the matrix ring Mn(Fp[t]/t
k
), where Fp[t]/t

k
is the truncated polynomial

algebra with coefficients in Fp. We see that Mn(Fp[t]/t
k
) is an Fp-algebra by the map

Fp  FpI. Throughout this section, we let !p = e2⇡i/p, where p is any prime. Since the

choice of p is immaterial to our work, we will often just write !p as !.

We reduce it to a nilpotent algebra over Fp by considering the ideal

J = t ·Mn(Fp[t]/t
k
)

Its nilpotency class is clearly k as (tX)

k
= 0 for all X 2Mn(Fp[t]/t

k
) . Then as discussed

above, we have the Fp-algebra group

G = I + t ·Mn(Fp[t]/t
k
) = I + J.

Since this is a p�group we know that all irreducible complex characters of G have p

power degree. Moreover, by Halasi [1] if � is an irreducible complex character of G,

then there exists an Fp-algebra subgroup H  G and a linear character � of H such

that � = �G.

For this section we attempt to follow the proof of Halasi to accurately describe the

situation when J = t ·M2(Fp[t]/t
k
). Specifically, we aim to find the sub-algebras U ⇢ J

and linear characters of I + U that induce the irreducible characters of I + J . To be

clear J is the Fp-algebra consisting of elements of the form

"
a1t+ ...+ ak�1t

k�1 b1t+ ...+ bk�1t
k�1

c1t+ ...ck�1t
k�1 d1t+ ...+ dk�1t

k�1

#
,

for ai, bi, ci, di 2 Fp. Hence the group G = I + J is elements of the form:

"
1 + a1t+ ...+ ak�1t

k�1 b1t+ ...+ bk�1t
k�1

c1t+ ...ck�1t
k�1

1 + d1t+ ...+ dk�1t
k�1

#
,

We directly see that |I + J | = |J | = p4(k�1).

4.1 k = 2

We start with the case when k = 2.

Proposition 4.1. The finite algebra group G = I + t ·M2(Fp[t]/t
2
) is an abelian group

of order p4.
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The proof is simple and we do it for clarity as well as the fact that it provides greater

insight into the group structure.

Proof. Let a, b, c, d, e, f, g, h be arbitrary elements in Fp.

Let

A =

"
1 + at bt

ct 1 + dt

#
,

and

B =

"
1 + et ft

gt 1 + ht

#
.

Then since t2 = 0 in Fp[t]/t
2
, we have

AB =

"
1 + (a+ e)t (b+ f)t

(c+ g)t 1 + (d+ h)t

#
= BA

Thus by Theorem 1.10 every irreducible character of G is one-dimensional and there

are p4 of them. The sub-algebras described by Halasi are just J itself. Furthermore, we

notice an interesting property of the multiplication of elements in I + J. To see this, let

us write A = I + tX and B = I + tY for

X =

"
a b

c d

#
2M2(Fp)

and

Y =

"
e f

g h

#
2M2(Fp),

then

AB = (I + tX)(I + tY ) = I + t(X + Y ).

Thus we have a group isomorphism

' : I + J !M2(Fp)
+

defined by

I + tX  X.

Since

M2(Fp)
+ ⇡ F4

p, (4.1)

we can apply the established results concerning representations of cyclic groups and

representations of product groups to determine the irreducible characters. The major

result required is the following proposition:
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Proposition 4.2. Let G be an abelian group that is the direct product of abelian sub-

groups G1 and G2, i.e. G = G1 ⇥G2.

1. If ⇢1 and ⇢2 are irreducible representations of G1 and G2 respectively, then ⇢ :

G! C⇥
defined by ⇢(g1, g2) = ⇢1(g1) ·⇢2(g2) is an irreducible representation of G.

2. Each irreducible representation of G is isomorphic to a representation ⇢1 ·⇢2, where

⇢i is an irreducible representation of Gi.

Proof. See Serre [4] for the more general result when G is not abelian. The proposition

is a consequence.

There is another way to view the irreducible representations of M2(Fp)
+

that is partic-

ularly illuminating for our purposes. To see this, observe that the character table of Fp

is completely determined by where we map 1. Moreover, since (1+ 1+ ...+1) (p times)

= 0, we have the following summary of the p irreducible characters of Fp:

0 1

�0 1 1

�1 1 !

�2 1 !2

... ... ...

�p�1 1 !p�1

.

Then consider arbitrary �i 2Irr(Fp),�i 6= �0. For each X 2 M2(Fp) we define a one-

dimensional character  X : M2(Fp)! C⇥
by the following rule:

 X(A) = �i(trXA).

We verify it is indeed a homomorphism from M2(Fp)
+ ! C⇥

.

Choose arbitrary X,A,B 2 M2(Fp). Then using the fact that �i : Fp ! C⇥
is a

group homomorphism we have:

 X(A+B) = �i(trX(A+B)) = �i(tr(XA+XB)) = �i(trXA+ trXB)

= �i(trXA) · �i(trXB) =  X(A) ·  X(B).

The following lemma is simple:

Lemma 4.3. Let  X : M2(Fp)! C⇥
be defined as above. Then  X =  Y if and only if

X = Y .
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Proof. The ( direction is obvious. For ) by letting

X =

"
x1 x2

x3 x4

#

and

A =

"
a1 a2

a3 a4

#
,

we see that tr(XA) = x1a1 + x2a3 + x3a2 + x4a4. The result follows by choosing the ai

in the obvious way.

Thus we immediately have p4 distinct one-dimensional characters of M2(Fp) and by our

earlier work, this must be the set Irr(M2(Fp)
+
).

4.2 A Digression on Symplectic Forms

To progress to higher values of k, we introduce some concepts that at first glance appear

to be unrelated, however prove to be quite useful.

Definition 4.4. Let V be a vector space over a field F . An anti-symmetric bilinear

form on V is a bilinear form B : V ⇥ V ! F , which satisfies the following properties

for all v, w 2 V :

1. B(v, w) = �B(w, v),

2. B(v, v) = 0,

We say that two vectors v, w 2 V are orthogonal if B(v, w) = 0. The Radical of the

form B, denoted by Rad(B) is described as the orthogonal space to the whole space V :

Rad(B) = {v 2 V |B(v, w) = 0 for all w 2 V }.

It is clear that Rad(B) is a subspace of V . An anti-symmetric bilinear form B is non-

degenerate if Rad(B) = {0}. This is equivalent to the stating that for all v 2 V, v 6= 0,

there exists w 2 V such that

B(v, w) 6= 0.

When a form B is both anti-symmetric and non-degenerate, we say that B is a sym-
plectic bilinear form on the vector space V .

Definition 4.5. If V is a vector space over F and B is a symplectic form on V , then

a subspace W is isotropic if B(x, y) = 0 for all x, y 2 W.

38



We also require the following Theorem:

Theorem 4.6. Let V be a vector space of positive dimension m over a field F , and let

B : V ⇥ V ! F be a symplectic bilinear form.

1. The dimension of V is even.

2. Every maximal isotropic subspace has dimension equal to dim(V )/2.

Proof. For (1) see Artin [2]. For (2) see Viterbo [17].

To illustrate the relevance of these definitions, we state the following powerful Theorem

from Bushnell and Frohlich [19].

Theorem 4.7. Let G be a finite group and N a normal subgroup, such that G/N is an

elementary abelian p�group. Thus G/N has the structure of a Fp vector space. Let � be

a one-dimesnional character of N , which is stabilized by G. Define an anti-symmetric

bilinear form on G/N by

B� : G/N ⇥G/N ! C⇥, B(ḡ, ¯h) = �(ghg�1h�1
).

Moreover, assume that the form is non-degenerate. Then there exists a unique up to

isomorphism irreducible representation ⇢� of G such that ⇢�|N contains �.

Proof. See Bushnell and Frohlich [19].

this is an important result that highlights the relationship between symplectic forms

and representation theory. We now turn our attention to the case when k = 3.

4.3 k=3

We make two identifications. Firstly,

I + J/I + J2 ⇡M2(Fp)
+.

Secondly, by including scalar multiplication (c,X) cIX for c 2 Fp and X 2 M2(Fp),

M2(Fp) has the structure of a vector space over Fp. Pulling our results back, we have

that

I + J/I + J2
is a vector space over Fp

where for X, Y 2M2(Fp), c 2 Fp:

1. Addition is given by the group operation, i.e. ((I + tX), (I + tY )) (I + tX)(I + tY ) =

I + t(X + Y ).

2. Scalar multiplication is given by the rule (c, I + tX) I + t(cX).
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Although this supplies some rigour, it is for the most part easiest to just identify

I +J/I +J2
as a vector space over Fp by treating the space as the vector space M2(Fp).

Secondly, we can embed the group F+
p in C⇥

by the map �1 defined in the preceeding

section. For reminder, �1 : F+
p ! C⇥

is a group homomorphism completely determined

by the fact that

�1(1) = e2⇡i/p = !.

Thus we can identify Fp with points on the unit circle in the complex plane. Although

�1 is a homomorphism defined on the additive group F+
p , the map is also well behaved

(to some extent) with respect to the multiplicative structure of Fp. Since �1(1) = ! and

�1(↵) = !↵
for all 0  ↵ < p, we have for 0  ↵  � < p

�1(↵�) = !↵�
= �1(↵)

�
= �1(�)

↵.

It is worth noting that �1(↵�) 6= �1(↵)�1(�) in general and thus it is not a group ho-

momorphism into C⇥
.

With these two identifications in place, we can now define a bilinear form on the vec-

tor space I + J/I + J2
into the embedding of Fp in the complex plane. As above,

⇡ : I + J ! I + J/I + J2
is the canonical homomorphism that sends g  g.

Our anti-symmetric bilinear form: Choose ✓X a non-trivial character of I + J2
.

For g, h 2 I + J we define

BX(g, h) = ✓X(ghg
�1h�1

).

Proposition 4.8. The function BX defined above is an anti-symmetric bilinear form -

a map I+J/I+J2⇥ I+J/I+J2 ! C⇥
that satisfies the conditions given in Definition

4.4.

Proof. For simplicity let BX = B. Firstly since ✓X is a character of I+J2
we have to show

that the function defined even makes sense. However, this is simple since I+J/I+J2
is

an abelian group, it must be that I + J2
contains the commutator subgroup and hence

all commutators.

Now we verify that the map is bilinear in the first variable only. Choose arbitrary

Y and Z 2M2(Fp) and observe that

(I + tY )(I + tZ)(I � tY + (tY )

2
)(I � tZ + (tZ)2)

= I + t2(Y Z � ZY ).
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Thus

B(I + tY , I + tZ) = ✓X(I + t2(Y Z � ZY )).

Then for Y1, Y2, Z 2M2(Fp) and by an abuse of notation we have

B(Y1 + Y2, Z) = ✓X((Y1 + Y2)Z � Z(Y1 + Y2)) = ✓X(Y1Z + Y2Z � ZY1 � ZY2)

= ✓X(Y1Z � ZY1) · ✓X(Y2Z � ZY2) = B(Y1, Z) · B(Y2, Z),

where we used the fact that ✓X is one-dimensional and thus a homomorphism.

Continuing with the same shorthand notation, to verify scalar multiplication we are

required to show that for ↵ 2 Fp we have

B(↵Y, Z) = ✓X(Y Z � ZY )

↵.

Working through we see that

B(↵Y, Z) = ✓X(↵Y Z � Z↵Y ) = �1(tr(↵X(Y Z � ZY )))

= �1(↵ · tr(X(Y Z � ZY ))) = �1(tr(X(Y Z � ZY )))

↵
= B(Y, Z)↵.

To show the map is bilinear in the second variable is a symmetrical argument and we

omit it.

Finally we verify that the map is anti-symmetric. To do so requires showing that

B(g, h) = B(h, g)�1.

This is straightforward since

✓X(ghg
�1h�1

) = ✓X((hgh
�1g�1

)

�1
) = ✓X(hgh

�1g�1
)

�1.

We compute the radical of BX .

Rad(BX) =

⇢
g 2 I + J/I + J2|B(g, h) = 1 for all h 2 I + J/I + J2

�
.

Suppose without loss of generality that g = I + tY for some Y 2M2(Fp). Then we have

the following fact:

Fact 4.9. The element g is contained in Rad (BX) if and only if [X, Y ] = 0.
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Proof. Firstly we show the ( direction. Suppose [X, Y ] = XY � Y X = 0. Then for

any Z 2M2(Fp):

✓X(I + t2(Y Z � ZY )) = �1(tr(X(Y Z � ZY ))) = �1(tr(XY Z)) · �1(tr(XZY ))

�1

= �1(tr(XY Z)) · �1(tr(Y XZ))�1
= �1(tr(XY � Y X)Z) = �1(0) = 1

For the ) direction, suppose g 2 Rad (BX) but [X, Y ] 6= 0. Then some entry of

XY � Y X =

"
a11 a12

a21 a22

#
,

is non-zero. Wlog suppose a11 6= 0. Then there exists a matrix Z 2 M2(Fp) such that

tr((XY � Y X)Z) = a11, which contradicts our assumption that g 2 Rad (BX). This

completes the proof.

Thus we can describe the radical of the form as follows:

Rad(BX) =

⇢
I + tY 2 I + J/I + J2

����[X, Y ] = 0

�
,

for Y 2M2Fp. The following lemma is straightforward:

Proposition 4.10. The Radical of the form BX is a subgroup of I + J/I + J2
.

Proof. The only condition worth verifying is that inverses are contained in Rad(BX).

Suppose I + tY 2 Rad(BX). Then I + tY
�1

= I � tY and the result follows from Fact

4.9.

Then the Correspondence Theorem states that ⇡�1
( Rad(BX)) is a normal subgroup of

I + J because Rad(BX) is a subgroup of the abelian group I + J/I + J2
. Moreover, if

we let H = ⇡�1
( Rad(BX)), then again by the Correspondence Theorem we have the

following diagram

I + J2 ⇢ H ⇢ I + J.

We now consider the conditions on X which determine Rad(BX). It is clear from Fact

4.8 that we need to determine the centralizer of X in M2(Fp). We denote the centralizer

of X by the notation C(X). We start with the simple case when X is a scalar matrix.

If

X =

"
↵ 0

0 ↵

#
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for some ↵ 2 Fp, then C(X) = M2(Fp) and Rad(BX) is the entire group I + J/I + J2
.

This amounts to saying that

Rad(BX) ⇡M2(Fp)
+

if X is a scalar matrix,

which is a 4-dimensional vector space ove Fp.

Now suppose that X is not a scalar matrix. Then we have the following:

Proposition 4.11. Let X 2 M2(Fp) and X not a scalar matrix. Then C(X) is a

2-dimensional vector space over Fp with basis {I,X}. In other words

C(X) = {c0I + c1X|ci 2 Fp}.

Corollary 4.1. If X 2 M2(Fp) is not a scalar matrix, then |Rad(Bx)| = p2 and

|⇡�1
(Rad(Bx))| = p6.

Proof of Proposition 4.11. We let Fp = F . Let f(t) be the characteristic polynomial of

the matrix X. Of course f is of degree 2.

Firstly, suppose the roots of the characteristic polynomial are not contained in F . Hence

f is irreducible. Then we have

K = F [X] ⇡ F [t]/hf(t)i,

a degree 2 field extension of F with basis {I,X}. As a vector space over F , we know

that K ⇡ (F )

2. Let V be the underlying vector space structure of K over F . Then V

has dimension 2 over F and dimension 1 over K. Hence any matrix in M2(F ) naturally

acts on V . Now observe that for any B 2 C(X), k 2 K and v 2 V , we have

B(kv) = k(Bv),

which implies that C(X) is the endomorphism ring of the vector space V over K. Hence

C(X) = K and the result follows.

If the charateristic polynomial f of X splits over F , then we reduce X to Jordan form by

conjugating X by some invertible element P . Then B 2 C(X) if and only if PBP�1 2
C(PXP�1

). There are two cases;

1. The roots of f are distinct, or

2. The roots coincide.
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.

When the roots are distinct then by direct computation it is simple to see that C(X)

must be diagonal and hence dim C(X) = 2.

If the roots of f coincide then after reducing to Jordan form we have

X =

"
� 1

0 �

#

for � 2 F. Then letting

X 0
= X � �I =

"
0 1

0 0

#

we see that C(X 0
) = C(X). Now suppose

B =

"
a b

c d

#
, B 2 C(X 0

).

Then by direct computation wee see that this occurs if a = d and c = 0. That is,

B = c0I + c1X
0
for ci 2 F. Replacing X 0

with X � �I completes the proof.

Since the aim is to understand representations of I + J , we now outline how to extend

characters of I + J2
to larger subgroups of I + J by using the radical of our form. For

some X 2M2(Fp), let BX be the form described above and let ✓X be the linear character

of I + J2
that corresponds to this form. Moreover, let H = ⇡�1

(Rad(BX)). Then we

have I + J2 � H  I + J and:

Proposition 4.12. The character ✓X extends as a linear character to the subgroup H.

To prove this proposition we rely on the following well-established result:

Proposition 4.13. Let G be a finite abelian group and let G1 be a subgroup of G. If �

is a linear character of G1 then � can be extended to a linear character of G.

Proof of Proposition 4.12. Let [H,H] be the commutator subgroup of H. Then by the

definition of the Radical of BX we have that [H,H]  ker(✓X). Let

ˆ✓X be the character

on I + J2/[H,H] defined by

ˆ✓X(ḡ) = ✓X(g). Since I + J2/[H,H]  H/[H,H] we can

extend

ˆ✓X to H/[H,H] by proposition 4.13. This naturally defines a character on H,

which by construction agrees with ✓X on I + J2
.

With this in hand, we seperate our work to deal with the following two cases:

1. X is a scalar matrix,

2. X is not a scalar matrix.
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4.3.1 X is a scalar matrix.

From our work above we know that ⇡�1
(Rad(BX)) = I + J. Hence by Proposition 4.13

the character associated to this form, ✓X , extends to I + J . Any such extension is a

linear character of I+J . There are p scalar matrices and for each matrix we can choose

|I + J/I + J2| = p4 unique extensions. This gives us p5 unique linear characters of G.

4.3.2 X is not a scalar matrix.

Suppose X is not a scalar matrix and let H = ⇡�1
(Rad(BX)). We know that |H| = p6.

By proposition 4.13 each ✓X extends to H in p2 unique ways. Let

ˆ✓X
i

denote an arbitrary

extension of ✓X . Then let

ˆBX : I + J/H ⇥ I + J/H ! C⇥

be given by

B(ḡ, ¯h) = ˆ✓X
i

(ghg�1h�1
).

The Fp-vector space I + J/H, containing p2 elements, has dimension 2. We choose a

maximal isotropic subspace M 0
, which by Theorem 4.6 has dimension 1. We extend

ˆ✓X

to ⇡�1
(M 0

) = M and denote this linear character by

˜✓X . The induced representation

˜✓I+J
X has dimension p and is irreducible. Since we could choose p4 � p non-scalar X

and extend these in p2 unique ways, we have identified p2(p4 � p) unique p degree

representations of I + J . Combining our results from 4.3.1 and 4.3.2 and applying the

counting formula we see that

|I + J | = p8 = p5(1) + p2(p4 � p)(p2).

Thus we have all irreducible represntations. This concludes our discussion of I +

tM2(Fp[t]/t
k
).
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5 Future work

In researching this paper Uri Onn provided the author with a nilpotent ring that closely

resembles the the algebra just considered. It was posed as a problem to see if we could

conclude a similar result to Halasi and/or understand its representations to the extent

just discussed in the preceeding section. We briefly explain this problem now.

Consider the matrix ring Mn(Z/pk) for some integer k � 2. The order of Mn(Z/pk)
is equal to the order of Mn(Fp[t]/t

k
) and the two rings exhibit many similarities. Simi-

larly, we reduce the ring Mn(Z/pk) to a nilpotent ring by considering the ideal

p ·Mn(Z/pk).

It is nilpotent because for any X 2 p ·Mn(Z/pk), we have

Xk
= 0.

However, unlike above, the original ring Mn(Z/pk) is not an Fp-algebra. If it was an

Fp-algebra then there would exist an injective ring homomorphism � : Fp !Mn(Z/pk).
But �(0) = p · �(1) = pI 6= 0 since k � 2. Thus no such homomorphism is possible. It

follows that the nilpotent ring p ·Mn(Z/pk) is also not an Fp-algebra for k > 2.

We now consider the group

G = I + pMn(Z/pk)

with the law of composition given by the rule (I+pX)(I+pY ) = I+p(X+Y )+p2(XY ).

Since the nilpotency class of pMn(Z/pk) is k, we see that for all pX 2 pMn(Z/pk) we

have that

(I + pX)(I � pX + (pX)

2 � (pX)

3
+ ...± (pX)

k�1
) = I.

Since G is not a finite algebra group, we are unable to directly apply the results of

Halasi. Nevertheless, we can do a similar study to the one conducted of the groups

I + tM2(Fp[t]/t
k
) and compare results.

5.1 The case when n = 2.

Here we briefly introduce some of the properties of the above group and its represen-

tations when G = I + pM2(Z/pk) and k � 2. In particular, we observe that there are

noticable similarities between these groups and the ones studied in the previous section.
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The exercises conducted above could be followed with these groups to gain further in-

sights. We briefly do the simplest of cases.

5.2 k = 2

When k = 2, then every g 2 I + pM2(Z/p2) can be uniquely written in the form

g =

"
1 + pa pb

pc 1 + pd

#
,

for a, b, c, d 2 Z/p. Since Z/p = Fp, by letting

X =

"
a b

c d

#
2M2(Fp),

re-write g as

g = I + pX.

Clearly, the choice of X defines each element in G. Moreover, for h = I + pY it follows

that

gh = I + p(X + Y ) = hg.

Recalling our work from Section 4.2 leads us to conclude that

I + pM2(Z/p2) ⇡M2(Fp)
+ ⇡ I + tM2(Fp[t]/t

2
). (5.1)

This allows us to accurately decsribe all characters of G: They are the characters out-

lined in Section 4.2.

This concludes our work. Hopefully the interested reader is keen to pursue the study of

such groups and provide a more comprehensive treatment of their characters.
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